

0960-894X(94)00314-9

A COMPARATIVE MOLECULAR FIELD ANALYSIS DERIVED MODEL OF THE BINDING OF TAXOL® ANALOGUES TO MICROTUBULES 1

Karl-Heinz A. Czaplinski and Gary L. Grunewald*

Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045

Abstract: We investigated a series of Taxol® (1, paclitaxel) analogues using a 3-D QSAR approach (CoMFA). Published and unpublished data for more than 50 compounds have been included in the analysis and the model has been used to predict the activity of other analogues. The model accurately describes known SARs and also has good predictive power.

As a guide to the design of new and more potent analogues of the anticancer drug 1, a 3-D QSAR model (CoMFA²) was developed using a training set of 49 analogues of 1 and the biological activities for binding to microtubules. Further, the biological activities of an additional 47 analogues were predicted from the model. See Figure 1 and Table 1. Structures and activity data³ were taken from a review⁴ and from unpublished results⁵ by Georg and coworkers.

Comparative Molecular Field Analysis (CoMFA).

Analogues with a variety of different substituents at C-7, C-10, and C-13 were included in this investigation. Structures used in the CoMFA analysis were constructed with the SYBYL⁶ software package based on the energy minimized structure of Taxotere[®] (39, docetaxel) taken from the Cambridge Crystallographic Database.⁷ Each starting structure was then energy minimized using the MAXIMIN2 force field with Gasteiger-Hückel charges (termination: gradient 0.05 kcal/mol). Finally the atomic charges of all compounds were calculated with the AM1 method.⁸ The minimum energy structures of all compounds were aligned by least-squares fitting of carbon atoms 1-15, 20, and oxygen atom 5 of the diterpene skeleton of each structure to the same 17 atoms of 39 using the FIT option of SYBYL.

The aligned structures of all compounds were then submitted to the CoMFA approach. First all superimposed molecules were placed in a three dimensional box containing a grid with a spacing of 2 Å. This region extended the shape of each molecule by at least 4 Å. Then the steric (van der Waals) and electrostatic (coulombic) interaction energies were sampled using an sp³ hybridized carbon (charged +1) as a probe atom at each intersection point of the three dimensional lattice.

To evaluate the optimal number of components and the predictive power of the resulting model an initial partial least squares (PLS) run with cross validation was calculated with ten components using both CoMFA fields. Any grid point for which the standard deviation of the energies was less than 2.0 kcal/mole was discarded to decrease the background noise and the number of CoMFA columns. Once the optimal number of components was determined by examination of the standard error, a second PLS run with no validation was calculated to yield the final model. The statistical results are shown in **Table 2**.

Results.

The results of the non-validated PLS runs were examined graphically (see **Figures 2** and **3** for model **b6**; the structure of docetaxel is used with no protons on the skeleton for clarity) and by prediction of the activity of compounds not included in the training set [See **Table 3**; the table also includes predicted results for three other models (**wb4**, **e4**, **s4**) not discussed in this paper. 9]. The resulting maps of the

electrostatic and the steric field of model $b6^9$ demonstrate, that in this data set, substituting the hydroxy functions at C-7 or C-10 has only a minor influence on the activity of the compounds in the microtubule assay. Most interactions take place around the phenyl isoserine side chain. Here, one important site is the 2'-hydroxy moiety, where, after esterification, a negative steric interaction was found by the CoMFA approach to give less active compounds like the 2'-acetylated analogues (67, 68) or the analogues where the 2'-hydroxy and 3'-amide functions have been interchanged (32, 34, 35, 36). Literature data 10 showed that R_3 '=Ph is better than smaller (e.g., H); the CoMFA results indicate that further substitution on the Ph at R_3 ' is detrimental (for steric reasons) with the exception of 4-MeO-Ph and 4-HO-Ph (24, 25). Substitution at position R_3 " is optimal for t-BOC-NH (39). For the subset of R_3 "=4-X-BzNH, the potency order increases as Hansch π_x and σ_p decrease [54(X=CF₃), 47(X=Cl), 51(X=Me), 1(X=H), 55(X=MeO)]. [See also the predicted values for 43 (X=NO₂), 45 (X=F) and 64 (X=N₃) in Table 3].

Discussion.

The information extractable from the steric and electrostatic maps of the CoMFA model **b6**⁹ is in good agreement with the results of reported structure activity relationships (SARs) (for a review of SARs see reference 4 and references cited therein) and may be useful as a graphical summary of the SARs reported to date. A disadvantage of the used data set is the small range in the variation of the structural properties of the paclitaxel (1) analogues (all include the oxetane ring and 4-acetyl and 2-benzoyl moieties), for which microtubule binding data were available.

The region of unfavorable steric interaction around the 2'-hydroxy group might actually represent a hydrogen bond interaction as reported by Kant and coworkers¹¹ or might at least incorporate that information to some extent. The predicted activity of 2'-deoxypaclitaxel (90) was about ten times too small compared to the actual value (actual ratio: 21.2).¹² A hydrogen bond interaction could also explain the higher activity of the compounds where hydroxy and amide functions have been interchanged. Compared to 2'-acetylpaclitaxel (67) those more bulky compounds (32, 34, 35, 36) retain an amide proton, which might act as a hydrogen bond donor. The significant difference in the binding affinity of 2'-deoxypaclitaxel (90) and 2'-deoxydocetaxel (87) (actual ratio: 2.3) might be due to an intramolecular hydrogen bond¹⁰ that is necessary to stabilize the side chain of paclitaxel (1), but not of the more bulky r-BOC group of docetaxel (39).

The lack of steric or electrostatic interactions around C-7 and the regions around the 3'-phenyl and the 3'-N, where bulk is not tolerated, may explain why there are no compounds reported in the literature, that are much more active than 1 or 39. Furthermore the very poor activity of the two photoaffinity labeling compounds (10, 11), that possess an azidobenzoyl moiety at C-7, underscores that larger groups probably will cause a negative steric interaction.

Conclusion.

We generated a 3-D QSAR model which not only has the ability to explain the activity of already known compounds but has an excellent predictive power to forecast the biological activity of new compounds within the range of the data set. ¹³ Further improvement of the model should easily be possible by increasing the variety of structural properties (e.g. modifications at the 2-benzoyl moiety, the exceptance ring or other parts of the skeleton) in the data set and by using a force field which better accounts for hydrogen bonding and hydrophobic interactions.

Acknowledgments.

We thank Dr. G. I. Georg (Department of Medicinal Chemistry, University of Kansas) for the structural data and Dr. R. A. Himes (Department of Biochemistry, University of Kansas) for the biological data of all unpublished compounds. K.-H. A. Czaplinski was supported by a Kansas Health Foundation cancer scholar grant and the Research Development Fund at the University of Kansas.

Figure 1. Structure of the paclitaxel analogues used.

Table 1. Structures used for calculating the CoMFA model (training set of 50 compounds).

#	stereo- chemistry	R3'	R3"	R2'	R 10	R7	ratio ^d	log (1/ratio)	ref.
	2'R, 3'S	Ph	BzNH	OH	OAc	ОН	1.0	0.0000	15
2	2'R, 3'S	Ph	BzNH	ОH	OH	ŎĤ	1.3	-0.1139	15
I 4 I	2'R, 3'S	Ph	BzNH	ÓН	OAc	B-XylosylO	0.4	0.3979	16
5	2'R, 3'S	Ph	BzNH	OH	OAc	ÓBz	1.7	-0.2304	17
7 1	2'R, 3'S	Ph	BzNH	ŎН	OH	β-XylosylO	0.6	0.2218	16
8°	2'R, 3'S	Ph	BzNH	OH	OAc	Glutarate	1.0	0.0000	15
وَ	2'R, 3'S	Ph	t-BOCNH	ŎН	OH	Phenylalaninate		0.0000	15
13°	2'R, 3'S	Pb	t-BOCNH	ŎН	Glycinate	Glycinate	i.ž	-0.0792	15
14"	2'R, 3'Š	Ph	BzNH	ŎĤ	OAc	ÓH	0.8	0.0969	18
18 ^b	2'R, 3'S	Ph	BzNH	ŎН	OAc	ŎН	3.0	-0.4771	1 19
21	2'R, 3'S	4-ClPh	BzNH	ŎН	ÖAc	ŎĤ	1.9	-0.2788	20
22	2'R. 3'S	4-FPh	BzNH	ŎН	OAc	OH OH	1.1	-0.0414	5
23	2'R, 3'S	4-MePh	BzNH	ŎН	OAc	ŎН	2.4	-0.3802	21
24	2'R, 3'S	4-HOPh	BzNH	ŎН	OAc	ŎĤ	0.8	0.0969	22
25	2'R, 3'S	4-MeOPh	BzNH	ОH	OAc	ОH	0.5	0.3010	1 3
26	2'R, 3'S	2-Naphthyl	BzNH	ŎН	OAc	ОH	7.1	-0.8513	5 5
31	2'R, 3'S	3-CIPh	BzNH	он	OAc	ŎН	4.4	-0.6435	Š
32	2'R, 3'S	Ph	OH	BzNH	OAc	ŎН	10	-1.0000	15
34	2'R. 3'S	Ph	OH	BzNH	OH	OH	10	-1.0000	liš
35	2'R, 3'S	Ph	ŎН	t-BOCNH	OAc	ОH	10	-1.0000	l iš l
36	2'R, 3'S	Ph	OH	t-BOCNH	OH	OH	10	-1.0000	l iš l
37	2'R, 3'S	Ph	3-CIBzNH	OH	OAc	OH	2.0	-0.3010	23
39	2'R, 3'S	Ph	t-BOCNH	он	OH	ОН	0.5	0.3010	15
44°	2'R, 3'S	Ph	GlutarylNH	ŎН	OH	OH	1.0	0.0000	l iš l
47	2'R, 3'S	Ph	4-ClBzNH	OH	OAc	OH	2.4	-0.3802	20
50	2'R, 3'S	Ph	n-BuOCONH	OH	OAc	OH	0.8	0.0969	5
51	2'R, 3'S	Ph	4-MeBzNH	OH	OAc	OH	1.6	-0.2041	l zĭ l
54	2'R, 3'S	Ph	4-CF ₃ BzNH	ОH	OAc	OH	6.0	-0.7782	21
55	2'R, 3'S	Ph	4-MeOBzNH	OH	OAc	OH	0.6	0.2218	23
56	2'R, 3'S	Ph	PyruvoyiNH	ŎН	OAc	OH	3.5	-0.5441	5
62	2'R. 3'S	Ph	t-ButylacetylNH	OH	OAC	OH	0.7	0.1549	24
67	2'R, 3'S	Ph	BzNH	OAc	OAc	OH	30.7	-1.4771	16
68	2'R, 3'S	Ph	t-BOCNH	OAC	OH	ОH	10	-1.4771	1 14
69°	2'R, 3'S	Ph	NH ₂	OH	OAc	OH	44	-1.6435	i5
71	2'S, 3'R	Ph	BzNH	OH	OH	OH	4	-0.6021	15
72	2'S, 3'R	Ph	t-BOCNH	OH	OAc	OH	30	-1.4771	15
73	2'S, 3'R	Ph	t-BOCNH	OH	OH	OH OH	30	-1.4771	15
74	2'S, 3'R	Ph	OH OH	BzNH	OAc	OH	110	-2.0414	15
75	2'S, 3'R	Ph	OH	BzNH	OH	OH	170	-2.2304	15
76	2'S, 3'R	Ph	OH	t-BOCNH	OAc	OH	108	-2.2304	15
77	2'S, 3'R	Ph	OH	t-BOCNH	OH	OH	160	-2.2041	15
78	2'R, 3'R	Ph	BzNH	OH	OH	OH	1.3	-0.1139	15
79°	2'R. 3'R	Ph	NH ₂	OH	OH	OH	30	-1.4771	15
80°	2'S, 3'S	Ph	NH ₂	OH	ОH	OH	30	-1.4771	15
81	2'S, 3'S	Ph	BzNH	OH	OH	OH	1.3	-0.1139	15
82	2'R	Ph	H	OH	ОH	OH	4.5	-0.6532	15
88	2'S. —	Ph	H	OH	OH	ОН	3.5	-0.5342	15
91		Ph	н	н	ŎН	ОH	17	-1.2304	1 15
92	trans	Me	double	bond	OAc	OH	100	-2.0000	15
93	trans	Ph	double	bond	OH	OH	23	-2.0000 -1.3617	15
<u></u>	uais	- FII	uouvie	DONG	Un	Un	43	-1.3017	113

 $^{^{}a}$ 9-dihydropaclitaxel. b (1 α)-15(16)-anhydro-11(15 \rightarrow 1)-abeopaclitaxel. c charged species were used. d ID₅₀(compound)/ID₅₀(paclitaxel). 3

Table 2.	Statistics	for the	CoMFA	approach f	or the c	ompounds of	Table 1.
----------	------------	---------	-------	------------	----------	-------------	----------

modela	# of cv groups ^b	# of comp.c	r ²	standard error	F value	bootstrapping (n=100):		
b6	50 0	6 6	0.842 0.957	0.317 0.164	38.2 161.4	r ² standard error	0.971 ± 0.009 0.133 ± 0.070	
wb4	50 0	4	0.853 0.958	0.298 0.159	65.5 259.5	r ² standard error	0.967 ± 0.009 0.139 ± 0.069	
e4	50 0	4 4	0.825 0.939	0.326 0.193	52.9 172.8	r ² standard error	0.957 ± 0.012 0.159 ± 0.079	
s4	50	4 4	0.814 0.936	0.336 0.196	49.3 165.8	r ² standard error	0.950 ± 0.015 0.171 ± 0.086	

amodel⁹ calculated using **b6**: both fields (default), **wb4**: both fields (with electrostatics at sterically bad points), **e4**: electrostatic field (default), **s4**: steric field (default). bnumber of crossvalidation groups. snumber of components.

Table 3. Predicting the biological activity of compounds using the CoMFA model.

	stereo-						actual	г	predicted ratiosa			
#	chemistry	R3'	R3"	R2'	R10	R 7	ratioa	b6 '	wb4	e4	,s4	ref.
3	2'R, 3'S	Ph	BzNH	ОН	OAc	OAc	2.0	1 2	1.0	0.9	1.2	16
6	2'R, 3'S	Ph	BzNH	ОН	OAc	4-(CF3(N2C))BzO	3.4	1.8	1.7	1.3	2.5	17
108	2'R, 3'S	Ph	BzNH	OH	OAc	4-N ₃ BzO	21 4	1.7	1.6	1.2	2.3	25
118	2'R, 3'S	Ph	BzNH	OH	OAc	4-N ₃ F ₄ BzO	> 22.4	1.6	1.3	0.8	2 3	26
12,	2'R, 3'S	Ph	TigloyINH	OH	OAc	B-XylosylO	0.5	07	0.7	0.9	0.9	16
15 ^h	2'R, 3'S	Ph	t-BOCNH	OH	Glutarate		2.0	0.4	0.5	0.3	0.7	1 15
16	2'R, 3'S	Ph	t-BOCNH	ОН	TrocO	TrocO	> 39	0.5	0.6	0.8	0.9	5
17.	2'R, 3'S	Ph	BzNH	OH	Н	ОН	143 ^c	2.1	2.4	1.6	2.4	27
19 ^b	2'R, 3'S	Ph	BzNH	OH	_	OH	106 ^c	1.3	2.0	2.0	1.4	27
20	2'R, 3'S	2-Furyl	BzNH	OH	OAc	ОН	0.9	3.9	4.0	3.7	5.4	28
27	2'R, 3'S	3-Furyl	BzNH	OH	OAc	ОН	0.9	2 2	2 7	3.2	2.2	28
28	2'R, 3'S	2-Pyridyl	BzNH	OH	OAc	OH	0.7	17	2.0	1.6	2.3	28
29	2'R. 3'S	3-Pyndyl	BzNH	OH	OAc	OH	0.5	16	1.7	1.4	18	28
30	2'R, 3'5	4-Pyridyl	BzNH	OH	OAc	ОН	0.4	1.6	1.6	1.5	1.6	28
33	2'R, 3'S	3.4-Cl ₂ Ph	BzNH	OH	OAc	OH	7.1	3.2	3.1	2.9	2.6	5
38	2'R, 3'S	2-Furyl	t-BOCNH	OH	OAc	OH	17	2.0	1.7	2.2	2.6	5
40	2'R, 3'S	Ph	1-BOCNH	OH	OAc	OH	0.5	0.5	0.6	1.0	0.7	15
41	2'R, 3'S	Ph	TigloylNH	OH	OAc	OH	1.5	1.3	1.7	2.1	1.7	29
42	2'R, 3'S	Ph	TigloylNH	OH	OH	OH	5 0	1 2	1.5	14	1.4	29
43	2'R, 3'S	Ph	4-NO ₂ BzNH	OH	OAc	ОН	2.0	2 3	2.5	2.6	1.8	23
45	2'R, 3'S	Ph	4-FBzNH	OH	OAc	ОН	12	1.4	1.2	1.3	1.2	23
46	2'R, 3'S	Ph	3,4-Cl ₂ BzNH	OH	OAc	OH	2 1	17	1.4	1.3	1.5	23
48	2'R, 3'S	Ph	2-MeBzNH	OH	OAc	OH	1.9	14	1.4	1.8	1.1	23
49	2'R, 3'S	Ph	3-N(Me) ₂ BzNH	OH	OAc	OH	1.4	1.4	1.2	1.2	1.3	23
52	2'R, 3'S		leC(NNH-1-BOC)CONH		OAc	OH	14 1	7.0	70	4.1	13.7	5
53	2'R, 3'S	Ph	MeC(NOH)CONH	ОН	OAc	ОН	3.5	2.8	2.1	2.1	3.3	5
57 58	2'R, 3'S	Ph	2-FuroylNH	ОН	OAc	ОН	0.8	1.5	1.5	1 4	1.6	5
	2'R, 3'S	Ph	3-FuroylNH	ОН	OAc	OH	0.4	2.3	20	17	2.8	5
59	2'R, 3'S	Ph	Me ₃ CCONH	ОН	OAc	ОН	2 6	14	1.3	1.4	2.0	24
60 61	2'R, 3'S	Ph	IsovalerylNH	OH	OAc	OH	1.2	0.8	1.1	20	1.1	24
63	2'R, 3'S 2'R, 3'S	Ph Ph	C ₅ H ₁₁ CONH	OH	OAc	ОН	0.4	0.7	0.9	1.5	0.8	5
648	2'R, 3'S	Pn Ph	BnOCONH	OH	OAc	ОН	3.3	2 7	29	2 4	3.8	5
658	2'R, 3'S	Pn Ph	4-N ₃ BzNH	OH	OAc	OH	2.0	14	1 1	1.0	1.3	26
66	2'S, 3'R	Ph	4-N ₃ F ₄ BzNH BzNH	OH	OAc	OH	4.6	1.4	10	1 1	1.3	26
70	2'R	H	BzNH	OH	OAc	OH	4.5	2.4	3.5	5.0	2.8	15
83	2'R. —	Ph	H	OH	OAc OAc	OH	5.6 ^c	14.3	9.7	5.6	10.9	10
84	2'R. —	H	H			он	13.2°	3.7	3 1	4.2	6.3	10
85	2 K. — 2 S. —	Н	H H	OH	OAc OAc	OH	5 6 ^c 6.4 ^c	29.4	23.9	17.5	64 7	10
86	2'5. —	Ph	H	OH	OAc	OH OH	0.4	46.6	34.2	22.5	68 6	10
87	3'S	Ph	t-BOCNH	H	OH	OH	15.7 ^c	5.7	6.6	11.4	7.2	10
89	-, 3'R	Ph	t-BOCNH	H			2 3	0.7	0.9	1.5	0.6	14
90	-, 3·S	Ph	BzNH	H	OAc OAc	OH OH	41	9.7	14 4	7 3	16.3	14
04	trans	Ph	double bo		TrocO		21 2	16	17	2 1	1.3	11.12
95d	—,			10	OAc	TrocO OH	1000	25.5	21.5	22 2	35.4	15
96e	3'R, 4'S	Ph	BzNH	ОН	OH	OH	52	96.4	76 8	45.0	162 2	16
97 ^f	3'R, 4'5	Ph	t-BOCNH	OH	OH	OH	> 27 > 27	20 2	32.4	24 1	33.1	30
			. Boelvii	On	_ 00	OII	241	10.5	24 4	21.6	15.2	30

^aID₅₀(compound)/ID₅₀(paclitaxel). ^b10-deacetoxy-10,11-12,18-tetradehydropaclitaxel. ^cinitial slope of tubulin³ polymerization. ^dbaccatin III. ^eC-13 side chain: 4-benzoylamino-3-hydroxy-4-phenylbutyryl. ^fC-13 side chain: 4-t-butoxycarbonylamino-3-hydroxy-4-phenylbutyryl. ^gSee ref. 31. ^hcharged species was used

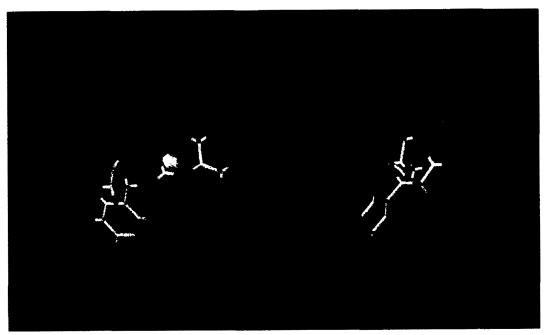


Figure 2 (left): Steric contour plot; (right): Steric contour plot, orthographic view. The positive contours are shown in green and the negative contours are shown in magenta. The contours were drawn at a 0.013 level.

Figure 3 (left): Electrostatic contour plot; (right): Electrostatic contour plot, orthographic view. The positive contours are shown in cyan and the negative contours are shown in orange. The contours were drawn at a 0.013 level.

References and Notes.

- Presented at the 207th National Meeting of the American Chemical Society (San Diego, CA, March 13, 1994, Abstract MEDI 105).
- 2. Cramer, R. D.; Patterson, D. E. and Bunce, J. D. J. Am. Chem. Soc. 1988, 110, 5959.
- (a) The ratios [ID₅₀(compound)/ID₅₀(taxol)] from the microtubule assembly assay and the microtubule disassembly assay were used to make the activity data comparable; (b) for a review of the in vitro microtubule assays (assembly and disassembly), see reference 21.
- 4. Georg, G. I.; Boge, T. C.; Cheruvallath, Z. S.; Clowers, J. S.; Harriman, G. C. B.; Hepperle, M. and Park, H. *Taxol: Science and Applications*; Suffness, M., Ed.; CRC Press, Inc.: Boca Raton, 1993 (in press).
- Georg, G. I.; Himes, R. A. and collaborators (unpublished results) 1993/1994. Activity data are from the microtubule assembly assay.
- 6. SYBYL 6.0, Tripos Associates, St. Louis, MO.
- (a) CSD, Cambridge Crystallographic Data Centre, Lensfield Road, Cambridge CB2 1EW, U.K., REFC= VEJCUI;
 (b) Guéritte-Voegelein, F.; Guénard, D.; Mangatal, L.; Potier, P.; Guilhem, J.; Cesario, M. and Pascard, C. Acta Crystallogr. 1990, C46, 781.
- 8. MOPAC 5.0 (QCPE program #455); Frank J. Seiler Res. Lab., U.S. Air Force Academy, Colorado Springs, CO 80840.
- 9. (a) model **b6**: both fields, no electrostatics at sterically bad points, optimum number of components is 6 as given by CoMFA; (b) model **wb4**: both fields, with electrostatics at sterically bad points, optimum number of components is 4 instead of 10 (less complex model with almost the same statistical quality); (c) model **e4**: electrostatic field only (other setup: default), optimum number of components is 4 instead of 7 (less complex model with almost the same statistical quality); (d) model **s4**: steric field only (other setup: default), optimum number of components is 4 instead of 10 (less complex model with almost the same statistical quality).
- 10. Swindell, C. S.; Krauss, N. E.; Horwitz, S. B. and Ringel, I. J. Med. Chem. 1991, 34, 1176.
- 11. Kant, J.; Huang, S.; Wong, H.; Fairchild, C.; Vyas, D. and Farina, V. Bioorg. Med. Chem. Lett. 1993, 3, 2471.
- 12. Personal communication of Dr. J. Kant, Bristol-Myers Squibb Pharmaceutical Research Institute.
- 13. Because there is only a small range in the actual activity data of the compounds in **Table 3** (with structural properties within the range of the training set) used for predicting the activity, these CoMFA models can be refined as new data become available.
- 14. Dubois, J.; Guénard, D.; Guéritte-Voegelein, F.; Guedira, N.; Potier, P.; Gillet, B.; Beloeil, J.-C. Tetrahedron 1993, 49, 6533.
- 15. Guéritte-Voegelein, F.; Guénard, D.; Lavelle, F.; Le Goff, M.-T.; Mangatal, L. and Potier, P. J. Med. Chem. 1991, 34, 992.
- 16. Lataste, H.; Sénilh, V.; Wright, M.; Guénard, D. and Potier, P. Proc. Natl. Acad. Sci. U.S.A. 1984, 81, 4090.
- 17. Kingston, D. G. I.; Samaranayake, G. and Ivey, C. A. J. Nat. Prod. 1990, 53, 1.
- 18. Klein, L. Tetrahedron Lett. 1993, 34, 2047.
- 19. Samaranayake, G.; Magri, N. F.; Jitrangsri, C. and Kingston, D. G. I. J. Org. Chem. 1991, 56, 5114.
- 20. Georg, G. I.; Cheruvallath, Z. S.; Himes, R. A. and Mejillano, M. R. Bioorg. Med. Chem. Lett. 1992, 2, 295.
- 21. Georg, G. I.; Cheruvallath, Z. S.; Himes, R. A. and Mejillano, M. R. Bioorg. Med. Chem. Lett. 1992, 2, 1751.
- Monsarrat, B.; Mariel, E.; Cros, S.; Garés, M.; Guénard, D.; Guéritte-Voegelein, F. and Wright, M. Drug Metab. Dispos. 1990, 18, 895.
- Georg, G. I.; Boge, T. C.; Cheruvallath, Z. S.; Harriman, G. C. B.; Hepperle, M.; Park, H. and Himes, R. H. Bioorg. Med. Chem. Lett. 1994, 4, 1825.
- 24. Georg, G. I.; Boge, T. C.; Cheruvallath, Z. S.; Harriman, G. C. B.; Hepperle, M.; Park, H. and Himes, R. H. Bioorg. Med. Chem. Lett. 1994, 4, 335.
- 25. Georg, G. I.; Harriman, G. C. B.; Himes, R. A. and Mejillano, M. R. Bioorg. Med. Chem. Lett. 1992, 2, 735.
- 26. Georg, G. I.; Harriman, G. C. B.; Park, H. and Himes, R. A. Bioorg. Med. Chem. Lett. 1994, 4, 487.
- 27. Chen, S.-H.; Fairchild, C.; Mamber, S. W. and Farina, V. J. Org. Chem. 1993, 58, 2927.
- 28. Georg, G. I.; Harriman, G. C. B.; Hepperle, M. and Himes, R. H. *Bioorg. Med. Chem. Lett.* 1994, 4, 1381; (27 assayed as a 3:1 diastereomeric mixture; 29 assayed as a 2:1 diastereomeric mixture).
- 29. Chauviere, G.; Guénard, D.; Picot, F.; Sénilh, V. and Potier, P. C. R. Seances Acad. Sci., 1981, Ser. 2, 293, 501.
- 30. Jayasinghe, L. R.; Datta, A.; Ali, S. M.; Zygmunt, J.; Georg, G. I. and Vander Velde, D. J. Med. Chem. 1994, (accepted).
- 31. The geometry of the azido group was taken from Magnoli, A.; Mariani, C. and Simonetta, M. Acta Crystallogr. 1965, 19, 367.